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/Capping protein (CP) and Arp2/3 protein complex regulate actin polymerization near the leading edge of motile cells. They \
assemble near the edge of the lamellipodium, undergo retrograde flow, and dissociate into the cytoplasm as single subunits or as

part of actin oligomers. To better understand this cycle, we modeled the kinetics of CP and Arp2/3 complex in the lamellipodium 3- Arp2/3 COmp'GX DynamiCS at the Leading Edge 5- SimUIation Of Capping PrOtG|n and Arp2/3 COmplex

using data from prior single molecule microscopy experiments [Miyoshi et al. JCB, 2006, 175:948]. In these experiments speckle / __ T _ . \
appearance and disappearance events corresponded to assembly and dissociation from the F-actin network. We used the Arp2/3 Lifetime Distribution Arp2/3 Appearance Profile Tu r n Ove r ] ]
measured dissociation rates of Arp2/3 complex and CP (0.048 s'! and 0.58 s%, respectively) in a Monte Carlo simulation that 120 ) Ca PPINE Protein
includes particles in association with F-actin and diffuse in the cytoplasm. We explored the effect of slowly diffusing cytoplasmic 100 p(t)= Ce */T 120 1° y/y(0) = Ae™*/%1 + Be~*/% / | | \
pool to account for a big fraction of CP with diffusion coefficients as slow as 0.5 pm?2/s measured by single molecule tracking [Smith i 100§ A, =125 um A =.714 e ERAD frorm Kaoucting of S'g“'at:ddFRA!’ n ‘;“r:“’de'- Simulated montage of CP recovery. Time per frame: 2 s
et al. Biophys. J., 2011,101:1799]. These slowly diffusing species could represent severed actin filament fragments. We show that 2 2 80 | Ay =2.0 ym B =.286 al. Cytoskeleton (2810) ' 0 Ea:mefr(;fng:zgam; e;lgr;]’ K is chosen from analysis of speckle data
such slow diffusion coefficients are consistent with prior FRAP experiments by Kapustina et al. [Cytoskeleton, 2010, 67:525] who g3 t=17.87s g sampling in 1x 5 um in the middle D =4 pm’/s, K=2.3 5", Dyyg= 0.5 /5, T,=3 5
fitted their data using larger diffusion coefficients. We also show that the single molecule data are consistent with FRAP © 40 10 | 5
experiments by Lai et al. [EMBO J., 2008, 28:986] who found that the Arp2/3 complex recovers more quickly at the front of the . o
lamellipodium as compared to the back. We discuss the implication of disassembly with actin oligomers and suggest experiments I M . . H
to distinguish among mechanisms that influence long range transport. / Miyoshi et al. J. Cell Biol. (2006), XTC cells 0015 27 39 51 63 75 87 9911 %01 2 3 4 5 6 ﬁ
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